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THE TORSION PROBLEM 

The elastic stress analysis of uniformly circular shafts in torsion 
is a familiar and straightforward concept to design engineers.   As the 
bar is twisted, plane sections remain plane, radii remain straight, and 
each section rotates about the longitudinal axis.   The shear stress at any 
point is proportional to the distance from the center, and the stress vector 
lies in the plane of the circular section and is perpendicular to the radius 
to the point, with the maximum stress tangent to the outer face of the bar. 
(Another shearing stress of equal magnitude acts at the same point in the 
longitudinal direction.)   The torsional stiffness is a function of material 
property, angle of twist, and the polar moment of inertia of the circular 
cross-section.   These relationships are expressed as: 

6    =   T/J'C, or T    =    oeo 

and     S    =    T«r/J,orS     =    G«e»r 
s s 

where T = twisting moment or transmitted torque, C = Modulus of Rigidity 
of the shaft material, 0 = angle of twist per unit length of the shaft, J = 
polar moment of inertia of the (circular) cross-section, S   = shear'stress, 
and r = radius to any point. s 

However, if the cross-section of the bar deviates even slightly from 
a circle, the situation changes radically and far more complex design 
equations are required. Sections of the bar do not remain plane, but 
warp into surfaces, and radial lines through the center do not remain 
straight. The distribution of shear stress on the section is no longer 
linear, and the direction of shear stress is not normal to a radius. 

The governing equation of continuity (or compatibility) from 
Saint-Venant's theory is 

a2cp a2(p 
alT + a# =   -2Ce 



where <I> = Saint-Venant's torsion stress function. The problem then is 
to find a O function which satisfies this equation and also the boundary 
conditions that 0 = 3 constant along the boundary. This $ function has 
the nature of a potential function, such as voltage, hydrodynamic velocity, 
or gravitational height. Its absolute value is, therefore, not important; 
only relative values or differences are meaningful. 

The solutions to this equation required complicated mathematics. 
Even simple, but commonplace, practical cross-sections could not be 
easily reduced to manageable mathematical formulae, and numerical ap- 
proximations or intuitive methods had to be used. 

One of the most effective numerical methods to solve for Saint- 
Venant's torsion stress function is that of finite differences.   The CLYDE 
computer program was applied to a number of shafts to produce the 
dimensionless design charts on the following pages.   Most of the charts 
required approximately 50 computer runs for plot data generation, but 
once completed, the design charts for that cross-section are good for 
virtually all combinations of dimensions, material, and shaft twist. 

The three-dimensional plot of O over the cross-section is a surface 
and, with $ set to zero (a valid constant) along the periphery, the surface 
is a domb or O membrane.1   The transmitted torque (T) is proportional to 
twice the volume under the membrane and the stress (S )  is proportional 
to the slope of the membrane in the direction perpendicular to the mea- 
sured slope.   Neglecting the stress concentration of sharp re-entrant 
corners, which are relieved with generous fillets, the maximum stress 
for bars with solid cross sections is at the point on the periphery nearest 
the center  (fig.  1) . 

^he best intuitive method, the membrane analogy, came from Prandtl. 
He showed that the compatibility equation for a twisted bar was the 
"same" as the equation for a membrane stretched over a hole in a flat 
plate, then inflated.   This concept provides a simple way to visualize 
the torsional stress characteristics of shafts of any cross-section rela- 
tive to those of circular shafts for which an exact analytical solution 
is readily obtainable. 
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Figure 1.   Membrane analogy. 



DESIGN CHARTS AND TABLES 

Design charts and related data which support the elastic torsional 
stress analyses conducted by MISD are shown in figures 2 through 25 
and tables 2 through 25, respectively.   The item nomenclature used in 
the analyses is given in table 1. 

These data are based on the stress function solution for various 
shapes provided by the CLYDE computer program and on Prandtl's 
membrane analogy. 

Since the design charts are dimensionless, they can be used for 
shafts of any material and any dimensions. 



Table 1.   Element nomenclature 

T    =   TRANSMITTED TORQUE, N - m (lb - in.) 

$    =   ANGLE OF TWIST PER UNIT LENGTH, rad/mm (rad/in.) 

G    =   MODULUS OF RIGIDITY OR MODULUS OF 
ELASTICITY IN SHEAR, kPa  (psi) 

R    =   OUTER RADIUS OF CROSS-SECTION, mm (in.) 

v'ds 
VARIABLES FROM CHARTS (OR TABLES) 
RELATED TO VOLUME UNDER "SOAP FILM 
MEMBRANE" AND SLOPE OF "MEMBRANE" 

Ss =   SHEAR STRESS, kPa (psi) 



.40 

.35 

.30 

.25 

.20 

.15 

.10 

.05 

TORSIONAL STIFFNESS 
TRANSMITTED TORQUE, 

T=2G-e(V)Rj 

.3 

yf 

Figure 2.   Split shaft, torque. 



Table 2.    Split shaft,  volume factor   (V) 

Y/Ri            Ri/Ro 

0.1 0.2 0.3 0.4 0.5 0.6 

0.1 .3589 .2802 .2068 .1422 .0891 .0491 

0.2 .3557 .2762 .2030 .1391 .0870 .0478 

0.3 .3525 .2722 .1991 .1360 .0848 .0464 

0A .3492 .2680 .1952 .1328 .0825 .0450 

0.5 .3457 .2637 .1911 .1294 .0801 .0436 

0.6 .3423 .2593 .1869 .1260 .0777 .0421 

0.7 .3387 .2548 .1824 .1223 .0750 .0405 

0.8 .3350 .2499 .1776 .1183 .0722 .0387 

0.9 .3312 .2447 .1725 .1139 .0689 .0367 

1.0 .3269 .2389 .1665 .1087 .0649 .0340 
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Figures.   Spirt shaft, stress. 



Table 3.     Split shaft,   slope factor   (d<I)/ds) 

Y/Rj Ri/Ro 

0J- ill              LI M 0J5 
O-1                     1.8987 1.2663 .9520 .7384 .5773 

0-2                     1.8953 1.2656 .9519 .7384 .5773 

0-3                     1.8916 1.2648 .9518 .7384 .5773 

0-6 1.8778 1.2617 .9512 .7383 .5773 

0-7 1.8722 1.2603 .9509 .7383 .5773 

0.6 

.4405 

.4405 

.4405 

.4405 O-^ 1.8875 1.2639 .9517 .7384 .5773 

0-5 1-8829 1.2629 .9515 .7384 .5773 .4405 

.4405 

.4405 

.4405 
0-8 1-8661 1.2585 .9505 .7382 .5773 

0-9 1.8585 1.2561 .9499 .7381 .5773 .4405 

*'0 1-8484 1.2526 .9488 .7378 .5773 .4405 
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Table 4.     Single keyway shaft,  volume factor   (V) 

A/B  B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .6994 .6472 .5864 

0.3 .7379 .6900 .6316 .5648 

0.4 .7341 .6816 .6173 .5459 

0.5 .7682 .7290 .6725 .6043 .5294 

0.6 .7676 .7262 .6663 .5941 .5152 

0.7 .7668 .7224 .6592 .5848 .5032 

0.8 .7658 .7190 .6533 .5762 .4931 

0.9 .7647 .7162 .6480 .5686 .4849 

1.0 .7633 .7125 .6424 .5619 .4783 

1.2 .7621 .7079 .6347 .5531 .4697 

1.5 .7592 .7012 .6260 .5449 .4649 

2.0 .7560 .6945 .6200 .5424 

11 
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Table 5.     Single keyway shaft,   slope factor   (d<E>/ds) 

A/B  B/R 

Oil £ii OJL <Li <L5 
0-2 1.7316 1.6911 1.5473 

0-3 1.6037 1.5729 1.4896 1.3753 

0-4 1.5274 1.4565 1.3673 1.2750 

0-5 1.4050 1.4158 1.3605 1.2888 1.2118 

0-6 1.3890 1.3840 1.3213 1.2470 1.1702 

0-7 1.3690 1.3383 1.2748 1.2128 1.1420 

0-8 1.3438 1.2992 1.2465 1.1864 1.1226 

0.9 1.3116 1.2783 1.2238 1.1669 1.1093 

T-O 1.2698 1.2469 1.2022 1.1524 1.1002 

1-2 1.2530 1.2215 1.1803 1.1374 1.0902 

T-5 1.2057 1.1893 1.1605 1.1259 1.0858 

2.0 1.1726 1.1680 1.1508 1.1234 

13 
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Table 6.    Two keyway shaft,  volume factor   (V) 

A/B B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .6187 .5226 .4195 

0.3 .6927 .6008 .4944 .3831 

0.4 .6853 .5848 .4688 .3517 

0.5 .7524 .6753 .5678 .4457 .3246 

0.6 .7511 .6698 .5562 .4277 .3014 

0.7 .7496 .6625 .5429 .4112 .2818 

0.8 .7477 .6558 .5319 .3962 .2655 

0.9 .7454 .6505 .5221 .3829 .2522 

1.0 .7426 .6433 .5117 .3713 .2416 

1.2 .7404 .6344 .4974 .3559 .2276 

1.5 .7346 .6215 .4813 .3416 .2197 

2.0 .7283 .6086 .4703 .3373 

15 
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Table 7.    Two keyway shaft,   slope factor   (d*/ds) 

A/B  B/R 

0.1 0.2 0.3 0.4 0.5 

0-2 1.6802 1.5861 1.3645 

0.3 1.5834 1.5203 1.3842 1.1911 

0.4 1.5064 1.4028 1.2598 1.0872 

0.5 1.4002 1.3939 1.3052 1.1785 1.0199 

0.6 1.3840 1.3616 1.2645 1.1340 .9742 

0.7 1.3639 1.3151 1.2163 1.0971 .9424 

0.8 1.3385 1.2754 1.1865 1.0683 .9199 

0.9 1.3061 1.2538 1.1624 1.0462 .9041 

1.0 1.2641 1.2216 1.1392 1.0297 .8930 

1-2 1.2470 1.1951 1.1151 1.0119 .8805 

1.5 1.1991 1.1612 1.0927 .9978 .8749 

2.0 1.1654 1.1382 1.0813 .9945 

17 
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Table 8.     Four key way shaft,  volume factor   (V) 

A/B     B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .4806 .3361 .2114 

0.3 .6088 .4511 .2965 .1705 

0.4 .5952 .4253 .2624 .1384 

0.5 .7214 .5769 .3983 .2333 .1140 

0.6 .7190 .5672 .3805 .2119 .0962 

0.7 .7161 .5541 .3605 .1935 .0842 

0.8 .7124 .5422 .3444 .1783 

0.9 .7080 .5330 .3304 .1662 

1.0 .7024 .5203 .3160 .1572 

1.2 .6982 .5051 .2974 .1482 

1.5 .6870 .4832 .2787 

2.0 .6748 .4622 .2692 

19 
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Table 9.     Four keyway shaft,   slope factor   (d<I>/ds) 

A/B  B/R 

2J.              ill              OJ. (Ml Oj^ 
0-2 1.5127 1.2969         .9683 

0-3 1.5096 1.3517 1.1047         .8172 

O-4 1.4303 1.2333 .9849         .7300 

0-5 1.3814 1.3158 1.1338 .9060         .6783 

0-6 1.3648 1.2814 1.0903 .8624         .6486 

0-7 1-3441 1.2326 1.0395 .8275         .6333 

0-8 1.3181 1.1908 1.0072 .8016 

0-9 1.2848 1.1672           .9810 .7834 

T-O 1.2418 1.1325            .9557 .7715 

1-2 1.2239 1.1027           .9290 .7627 

1.5 1.1739 1.0638 .9054 

2.0 1.1376 1.0356 .8959 

21 
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Table 10.     Single square keyway with inner fillets 

Slope factor   (dO/ds) 

B/R 

0.1 

0.2 

0.3 

0.4 

0.5 

Volume 
factor   (V) 

At keyway 
center (1) 

At inner 
fillet (2) 

.7703 1.5180 1.2024 

.7206 1.3308 1.4091 

.6504 1.2397 1.4072 

.5690 1.1716 1.3249 

.4840 1 .11 03 1.1854 

23 



1.15 
TORSIONAL STIFFNESS 

TRANSMITTED TORQUE, 
T = 2G-0(V)R4 

A/B = 2.0 

1.10 

1.05 

1.00 

.95 

.90 

.85 

.80 

_L JL X 
.1 .2 .3 .4 

B/R 

Figure 11.   Single spline shaft, torque. 

24 



Table 11.    Single spline shaft,  volume factor   (V) 

A/B B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .7853 .7865 .7878 

0.3 .7853 .7870 .7906 .7944 

0.4 .7864 .7903 .7968 .8048 

0.5 .7845 .7874 .7933 .8035 .8189 

0.6 .7852 .7899 .7993 .8143 .8362 

0.7 .7857 .7918 .8059 .8270 .8580 

0.8 .7862 .7950 .8113 .8390 .8832 

0.9 .7866 .7976 .8202 .8560 .9110 

1.0 .7869 .7996 .8253 .8712 .9433 

1.2 .7890 .8071 .8456 .9117 1.0158 

1.5 .7907 .8174 .8754 .9800 1.1561 

2.0 .7953 .8407 .9420 1.1404 

25 



d^ 7 It ds 

.5      .6      .7     .8 
i 1 1 1 1 1 I ■        ■        ■        ■ 

.9     1.0    1.1     1.2    1.3    1.4    1.5    1.6    1.7    1.8   1.9    2.0 

A/B 

Figure 12.   Single spline shaft, stress, 

26 



Table  12.     Single spline shaft,   slope factor   (d<E>/ds) 

A/B  B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .9753 .9757 .9759 

0.3 .9753 .9758 .9767 .9774 

0.4 .9757 .9767 .9782 .9797 

0.5 .9751 .9759 .9773 .9796 .9827 

0.6 .9753 .9767 .9789 .9823 .9864 

0.7 .9754 .9771 .9807 .9853 .9912 

0.8 .9756 .9780 .9820 .9879 .9966 

0.9 .9757 .9787 .9843 .9921 1.0028 

1.0 .9758 .9792 .9854 .9954 1.0100 

1.2 .9765 .9813 .9908 1.0055 1.0272 

1.5 .9769 .9841 .9984 1.0228 1.0646 

2.0 .9782 .9906 1.0169 1.0714 

27 
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Table 13.    Two spline shaft,  volume factor   (V) 

A/B B/R 

0.1 0.2 0.3 0.4 0.5 
0.2 .7865 .7889 .7914 

0.3 .7864 .7899 .7970 .8047 

0.4 .7886 .7965 .8095 .8255 

0.5 .7850 .7906 .8026 .8229 .8538 

0.6 .7863 .7958 .8145 .8446 .8886 

0.7 .7874 .7994 .8278 .8701 .9326 

0.8 .7883 .8059 .8386 .8945 .9837 

0.9 .7891 .8111 .8565 .9288 1.0400 

1.0 .7897 .8152 .8668 .9595 1.1058 

1.2 .7940 .8302 .9078 1.0418 1.2547 

1.5 .7973 .8509 .9682 1.1818 1.5471 

2.0 .8066 .8980 1.1045 1.5172 

29 



Figure }U.   Two spline shaft, stress 
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Table 14.    Two spline shaft,   slope factor   (dO/ds) 

A/B  B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .9757 .9763 .9769 

0.3 .9757 .9766 .9784 .9799 

0.4 .9763 .9784 .9815 .9845 

0.5 .9753 .9768 .9799 .9844 .9906 

0.6 .9757 .9783 .9830 .9896 .9980 

0.7 .9760 .9793 .9864 .9956 1.0076 

0.8 .9763 .9811 .9890 1.0011 1.0187 

0.9 .9765 .9825 .9937 1.0094 1.0312 

1.0 .9767 .9836 .9959 1.0164 1.0462 

1.2 .9780 .9877 1.0068 1.0367 1.0812 

1.5 .9789 .9933 1.0222 1.0722 1.1595 

2.0 .9817 1.0066 1.0601 1.1739 
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Figure 15.   Four spline shaft, torque. 
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Table 15.    Four spiine shaft,  volume factor  (V) 

A^B  B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .7888 .7937 .7989 

0.3 .7887 .7957 .8101 .8254 

0.4 .7932 .8090 .8352 .8674 

0.5 .7859 .7971 .8213 .8623 .9250 

0.6 .7885 .8076 .8452 .9063 .9962 

0.7 .7906 .8149 .8723 .9588 1.0877 

0.8 .7924 .8280 .8944 1.0090 1.1950 

0.9 .7940 .8386 .9310 1.0808 1.3158 

1.0 .7954 .8467 .9519 1.1455 1.4601 

1.2 .8040 .8773 1.0378 1.3239 1.8021 

1.5 .8106 .9196 1.1663 1.6438 

2.0 .8292 1.0180 1.4739 
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Table 16.     Four spline shaft,   slope factor   (dO/ds) 

A/B  B/R 

OJ                0-2                0.3 0^ QJ^ 

0-2 1.0027 1.0052 1.0073 

0-3 1.0027 1.0063 1.0135 1.0196 

O-4 1.0052 1.0134 1.0260 1.0385 

0-5 1.0010 1.0072 1.0193 1.0381 1.0646 

0-6 1.0026 1.0132 1.0321 1.0601 1.0978 

0-7 1.0039 1.0170 1.0469 1.0873 1.1436 

0-8 1.0050 1.0246 1.0578 1.1131 1.2019 

0-9 1.0059 1.0304 1.0788 1.1552 1.2743 

T-0 1.0066 1.0346 1.0890 1.1911 1.3766 

1-2 1.0118 1.0525 1.1432 1.3210 1.7211 

1-5 1.0156 1.0778 1.2313 1.6632 

2.0 1.0270 1.1463 1.5858 
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Table 17,    Square keyways and external  splines,  volume factor   (V) 

B/R One key way Two keyways Four keyways 

0.1 .7633 .7426 .7024 

0.2 .7125 .6433 .5203 

0.3 .6424 .5117 .3160 

0.4 .5619 .3713 .1572 

0.5 .4783 .2416 

B/R One spline Two splines Four splines 

0.1 .7869 .7897 .7954 

0.2 .7996 .8152 .8467 

0.3 .8253 .8668 .9519 

0.4 .8712 .9595 1.1455 

0.5 .9433 1.1058 1.4601 
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SHEAR STRESS 

B/R 

Figure 18.   Square keyways and external splines. stress. 
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Table 18.    Square keyways and external  splines, 
slope factor   (dO/ds) 

B/R One keywa [Z Two keyways Four keyways 

0.1 1.2698 1.2641 1.2418 

0.2 1.2469 1.2216 1.1325 

0.3 1.2022 1.1392 .9557 

o.n 1.1524 1.0297 .7715 

0.5 1 .1002 .8930 

B/R One Spline Two splines Four splines 

0.1 .9758 .9767 1.0066 

0.2 .9792 .9836 1.0346 

0.3 .9854 .9959 1.0890 

0.4 .9954 1.0164 1.1911 

0.5 1 .0100 1.0462 1.3766 
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Table 19.     Milled shaft,  volume factor   (V) 

H/R One flat Two flats Four flats 

0 .7813 .7811 .7811 

0-1 .7617 .7149 .6520 

.5998 .4501 
.2777 

.4667 

.3349 

.2168 

.1225 

.0559 

.0173 

0.2 .7018 
0.29289 

0.3 .6291 

0.4 .5510 

0.5 .4717 

0.6 .3951 

0.7 .3228 

0.8 .2568 

0.9 .1980 

1.0 .1460 
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Table 20.     Milled shaft,   slope factor   (d*/ds) 

H/R One flat Two flats Four flats 

0 1.0 1.0 1.0 

0.1 1.1870 1.1788 1.1465 

0.2 
0.29289 

1.2078 1.1773 1.0718 
.9507 

0.3 1.1975 1.1279 

0.4 1.1710 1.0423 

0.5 1.1333 .9227 

0.6 1.0876 .7717 

0.7 1.0352 .5940 

0.8 .9773 .3996 

0.9 .9148 

1.0 .8457 
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Figure 21.   Rectangular shaft. 
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Table 21.     Rectangular shaft 

Volume 
B/A factor   (V) 

0.3 .05635 

0.4 .1248 

0.5 .2250 

0.6 .3559 

0.7 .5146 

0.8 .6971 

0.9 .8991 

1.0 1 .11 67 

Slope 
factor   (dO/ds) 

.5942 

.7731 

.9280 

1.0563 

1.1589 

1.2391 

1.3008 

1.3475 
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Figure 22.   Pinned shaft, torque. 
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Table 22.     Pinned shaft,  volume factor   (V) 

A/R One i groove Two grooves Four grooves 

0.1 .7700 .7558 .7280 

0.2 .7316 .6803 .5855 

0.3 .6760 .5738 .4062 

0.4 ,6087 .4521 .2374 

0.5 .5349 .3300 .1118 
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ds 

Figure 23.   Pinned shaft, stress. 
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Table 23.     Pinned shaft,   slope factor   (d$/ds) 

A/R One groove Two grooves Four grooves 

0.1 1.8164 1.3111 1.7907 

0-2 1.7698 1.7452 1.6558 

0-3 1.6852 1.6229 1.4249 

0-4 1.5831 1.4603 1.1441 

0.5 1.4878 1.2753 0.8728 
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Table 24.    Cross shaft,  volume factor   (V) 

X/S Shape P Shape M 

0.1 .00741 .09907 

0.2 .05219 .2120 

0-3 .1642 .3767 

0.4 .3538 .5714 

0.5 .5947 .7639 

0.6 .8302 .9247 

0.7 1.0058 1.0368 

0.8 1.0981 1.0981 
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Table 25.    Cross shaft,   slope factor   (d<&/ds) 

X/S Shape P 
At x At b 

 II 
At x At a 

0.1 .3986 .1036 .8060 .1280 

0.2 .7615 .2514 1.0051 .3589 

0,3 1.1577 .4247 1.1917 .6139 

0.4 1.4997 .6450 1.3535 .8503 

0.5 1.6925 .8901 1.4071 1.0416 

0.6 1.6795 1.1007 1.4011 1.1755 

0.7 1.4573 1.2335 1.2563 
■ 

1.2539 

0.8 1.0460 1.2896 1.0460 1.2896 
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ACCURACY OF THE COMPUTERIZED SOLUTION 

To compare the CLYDE   (computer)  analysis of the torsion of a 
solid circular shaft with the exact,  classical textbook solution,  one 
quadrant of a  unit-radius shaft was run with two finite-difference grid 
spacings and the results of the equations were compared,  as follows: 

Equation Comparison CLYDE Exact 

Torque 2Ge(V)R4 

2 (V) R4 

2 (V) R4 

2V 

-> 
->• 

G0J 
J 
(7t/2)R4 

(71/2) 

Shear stress (max) ce(df,R ->■ ceR 

& 
-> 1. 

CLYDE Exact Deviation   {%) 

Torque (h=0 
(h=0, 

.125) 

.0625) 
1.5546 
1.5669 

1.5708 
1.5708 

1.03 
0.25 

Shear stress (h=0, 
(h=0. 

125) 
0625) 

0.9379 
0.9688 

1.0 
1.0 

6.21 
3.125 

Area* (h=0. 
(h=0. 

125) 
0625) 

3.13316 
3.13984 

3.14159 
3.14159 

0.268 
0.056 

^Used for  internal  program checking, 

The mathematical model  used  in the CLYDE computer program  is 
described  in appendix A.    A planned extension of the mathematical 
model  is contained in appendix B. 
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PARALLEL SHAFT CONCEPT 

The torsional  rigidity of a  uniform circular shaft,   i.e.,   the torque 
required to produce unit   (one radian)   displacement,   is: 

C = T/e = G«J 

In the terminology of the membrane analogy,   the torsional  rigidity 
of non-circular shafts is defined as: 

C = T/0 = 20e(V)f(R)/e 

The overall  torsional  rigidity of a  system consisting of a number 
of shafts in parallel   (fig.   26)   is simply the sum of the torsional 
rigidities of the individual component shafts. 

N 
E 
i=l 
i    c. = Cx + c2 + c, + ••• + r 

i        1        ^        3 N 

N N 
z    T.e. = ei    T. = err, + T2 + T, + •• + T ) 

The torsional  rigidity of hollow shafts can be determined by re- 
garding the configuration as a parallel  shaft arrangement.    The over- 
all torsional  rigidity can  be obtained by subtracting the torsional 
rigidity of a shaft having the dimensions of the bore   (or  inner contour) 
from that of a  shaft having the dimensions of the outer contour.    The 
advantages of being able to apply the principles of superposition 
(fig.   27-31)  to combinations of concentric   (inner and outer)   shaft con- 
tours are obvious.     If,  for example,  design charts have been prepared 
for 20 different shaft shapes,  then 400 different solutions to all  possible 
combinations of inner and outer  shaft contours   (20 inner x 20 outer) 
are available. 
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APPENDIX A 

MATHEMATICAL MODEL USED IN THE CLYDE COMPUTER PROGRAM 

As the term implies, boundary value problems are those for which 
conditions are known at the boundaries.   These conditions may be the 
value of the problem variable itself (temperature, for example), the 
normal gradient or variable slope, or higher derivatives of the problem 
variable.   For some problems, mixed boundary conditions may have to be 
specified:    different conditions at different parts of the boundary.   CLYDE 
solves those problems for which the problem variable itself is known at 
the boundary. 

Given sets of equally spaced arguments and corresponding tables 
of function values, the finite difference analyst can employ forward, 
central, and backward difference operators.   CLYDE is based upon central 
difference operators which approximate each differential operator in the 
equation. 

The problem domain is overlaid with an appropriately selected grid. 
There are many shapes (and sizes) of overlaying Cartesian and polar 
coordinate grids: 

rectangular 
square 
equilateral-triangular 
equilangular-hexagonal 
oblique 

Throughout the area of the problem, CLYDE uses a constant-size 
square grid for which the percentage errors are of the order of the grid 
size squared (h2) .   This grid (or net) consists of parallel vertical lines 
spaced h units apart, and parallel horizontal lines, also spaced h units 
apart, which blanket the problem area from left-to-right and bottom-to- 
top. 

The intersection of the grid lines with the boundaries of the domain 
are called boundary nodes.   The intersections of the grid lines with each 
other within the problem domain are called inner domain nodes.   It is at 
these inner domain nodes that the finite difference approximations are 
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applied.   The approximation of the partial differential equation with the 
proper finite difference operators replaces the PDE with a set of subsi- 
diary linear algebraic equations, one at each inner domain node.   In 
practical applications, the method must be capable of solving problems 
whose boundaries may be curved.   In such cases, boundary nodes are 
not all exactly h units away from an inner node, as is the case between 
adjacent inner nodes.   The finite difference approximation of the harmonic 
operator at each inner node involves not only the variable value at that 
node and at the four surrounding nodes (above, below, left, and right), 
but also the distance between these four surrounding nodes and the inner 
node.   At the boundaries, these distances vary unpredictably.   Compensa- 
tion for the variation must be included in the finite difference solution. 
CLYDE represents the problem variable by a second-degree polynomial 
in two variables, and employs a generalized irregular "star" in all direc- 
tions for each inner node.   In practice, one should avoid a grid so coarse 
that more than two arms of the star are irregular (or less than h units in 
length) .   The generalized star permits, and automatically compensates for, 
a variation in length of any of the four arms radiating from a node.   For no' 
variation in any arm, the algorithm reduces exactly to the standard har- 
monic "computation stencil." 

At each inner domain node, a finite difference approximation to the 
governing partial differential equation (PDE) is generated by CLYDE. 
The resulting set of linear algebraic equations is solved simultaneously 
by the program for the unknown problem variable (temperature, voltage, 
stress function, etc.) at each node in the overlaying finite difference 
grid.   A graphics version of the program also generates, and displays 
on the CRT screen, iso-value contour maps for any desired values of the 
variable.   This way, a more meaningful picture of the solution in the 
form of temperature distributions, constant voltage lines, stress concen- 
tration graphs, or even contour lines of different values of deformation 
and bending moment in structural problems, is made available to the 
engineer. 

The user may also specify a finer grid spacing to increase resolu- 
tion in critical regions of the problem, modify the scale of the display, 
change the boundary of the problem or redraw it completely, and change 
boundary conditions and coefficients—all at the face of the screen     It is 
also possible to request CLYDE to pass a plane through the two dimen- 
sional picture displayed on the screen.   This plane is perpendicular to 
the screen and appears as a straight line.   CLYDE will generate a new 
display showing a cross section  (or elevation) view from the edge or 
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Figure A-1.   Finite difference grid, 
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side.   In this manner the variation or plot of the solved variable along 
that line is displayed on the screen.   If the problem geometry is symme- 
trical, the designer does not have to display and work with the entire 
picture of the problem, he need only work with the "repeating section." 
In essence, the graphics user may examine the problem solution at will 
and redesign the problem (contour, boundary conditions, equation co- 
efficients, etc.) at the screen resolving the "new design" problem. 

Consider the general expression: 

v^A|!^BS + f|f   D Eqm 

in the r), |, k coordinate system, where A, B, C, D are arbitrary 
constants. 

When C = 0, V 2f reduces to a two-coordinate system, in X and Y, 
for example: 

Using central differences, the finite difference approximations to 
the partial differential operators of function fat representative node O 
are: 

ax   2h   lTl    r3j'ay"2h   (f2    f4) 

x y 

92f        1 

h 

x 

a2f     i 
(fj - 2 f0 +f4) Eq (3) 

y 

for a square grid, h   = h   = h and the harmonic operator V2f becomes: 

h2V 2fo = [A (fi + fj) + B  (f2 + f4) - (A+B) 2f0] = h2D Eq  (4) 

see figure A-4. 
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Figure A-3.   Inner domain nodes. 
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h«, ■ h "*|       COMPUTATION   STENCIL 
AT NODE 0 

Figure A-4,   Harmonic operator for square star in X-Y grid, 
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This finite difference equation at node zero involves the unknown 
variable at node zero (f0) plus the unknown value of the variable at the 
four surrounding nodes (fj, f2, f3, f4), plus the grid spacing (h) .   The 
five nodes involved form a four-arm star with node zero at the center. 
This algebraic (or difference) equation could be conveniently visualized 
as a four-arm computation stencil made up of five "balloons" connected in a 
four-arm star pattern and overlayed on the grid nodes.   The value within 
each balloon is the coefficient by which the variable (f) at that node is 
multiplied to make up the algebraic approximation equation. 

The numerical treatment of an irregular star [h^ h2t hst h4) re- 
presents the function f near the representative node O by a second-degree 
polynomial in X and Y: 

f(X,Y) = f0 +a1X+a2Y + a3X
2 +a4Y

2 +a5XY Eq (5) 

Evaluating this polynomial at the neighboring nodes (1, 2, 3, 4) 
produces the following set of equations: 

fl  =fo   +3! Hi   +83 h^ 

f 2 = f o + a2h2 + a4h2
2 

f3 = fo - aihs +33ha2 

U =U - 32 h4 +a4h42 Eq  (6) 

which are then solved for 33 and a4 which are necessary to satisfy the 
harmonic operator V2f, since: 

df a2f 
gj =8! +2a3X + a5Y/ ^ = 2a3 

^; = 32 +2a4Y + a5X/ ^- = 234 Eq  (7) 

and 

V2<: = A {2as) +B (2a4) Eq (8) 
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Performing the necessary algebraic operations, substituting results, 
collecting terms, and using the following ratios: 

"•^ b'°k Eq(9, 
The harmonic operator becomes: 

r 

0       , bi(bi+bs)     1     b2{b2+b4)     
2 

, 2A 2B 
bjCbi+b,)    s     b4(b2+b4)     4 + 

2A _2B 
'bxbz        b2b4 
(F^Tr +   h.h. ^foi    =   h2D Eq  (10) 

See figure A-5. 

When C#D, V2f can be applied to an axisymmetric cylindrical co- 
ordinate system, in R and Z, for example: 

For a regular star, the harmonic operator becomes (in a similar 
manner to equation 4): 

h2V2f0 = |A(f1 +f,) +B(f2 +f4) +^   (f2 -f4) 

- (A + B)2f0|    =h2D Eq  (12) 

See figure A-6. 
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IRREGULAR  STAR AT NODE 0 
a 

NEIGHBORING NODES (I. 2,3.4.) 

'•'*-&   'B-^.o 

Figure A-5.   Harmonic operator for irregular star in X-Y grid. 
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Figure A-6.   Harmonic operator for square star for R-Z grid. 
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For an irregular star (^ # h2 / h, # hj, the harmonic operator 
becomes (in a manner similar to equation 10): 

h2V2fo   = 
2A 

ft + 
2B 

Mbi+b,)    1    b2(b2+b4) f, + 

2A 
f» + 

2B 
b3(b1+b3)    3     b4(b2+b4)   

,4 

Ch    / 

f. + 

Ro      I b2(b2+b4)    l2     b4(b2+b4)    U (    + 

<   2A ( JA_   + JB_ _  Ch      b2-b4 A 
jbab,       b2b4        R0     

lb2b4   V   r« 

= h2D 

See figure A-7. 

Eq (13) 

Equations 10 and 13 are employed in the programmed solutions for 
Cartesian and cylindrical coordinates, respectively. 

7^ 

- 

. 



Figure A-7.   Harmonic operator for irregular star in R-Z grid, 
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APPENDIX B 

EXTENSION OF MODEL TO HOLLOW SHAFTS 

This would appear to be a simple matter of solving the governing 
PDE over a multiply-connected boundary, were it not for the uncertainty 
concerning boundary conditions.   The actual value of the problem variable 
at the boundary was not important in the torsion application, only the dif- 
ference in the problem variable at various points mattered.   The problem 
variable at the boundary could be assumed to have any value, as long as 
there was only one boundary.   With two or more boundaries the solution 
calls for a different approach. 

The stress function is obtained as the superposition1 of two solu- 
tions, one of which is adjusted by a factor (k) .   This is the planned pro- 
grammed solution to shafts with a hole.   The hole may be of any shape, 
size, and location.   The two solutions, to be combined, are shown in 
figure B-1: equations and boundary conditions.   This capability already 
exists in CLYDE.   The solution for k will be added, and then the final 
superposition of results.   Once the contour integrals are taken around 
the inner boundary of area A   , the only unknown, k, may be readily 
obtained.   The contour integral, which need not be evaluated around the 
actual boundary, may be taken around any contour that encloses that 
boundary, and includes none other (for example, see shaded area A   ) 
in figure B-1. B 

F. S. Shaw, The Torsion of Solid and Hollow Prisms  in the Elastic 
and Plastic Range by Relaxation Methods, Australian Council for 
Aeronautics, Report ACA-11, November 1944, pp 8, 11, 23. 
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V7 2 0-o = _2 7Z^1= 0 

-2AB=(f,^ds+k(f^ds 
J dv ) dv 

Figure B-1.   Mathematical approach to hollow shaft problem. 
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